건강보조식품으로 잘 알려진 '효소'가 넘쳐나는 플라스틱 쓰레기를 처리할 구원투수로 떠오른다. 유럽에선 효소를 이용해 페트병, 의류 등에서 나온 PET(폴리에틸렌 테레프탈레이트)를 고순도로 분해해 재활용하는 기술이 연구실을 넘어 이미 산업 단계로 접어들었다. 지난 19일 경남 창원에서 열린 '2024 한국생물공학회 춘계학술발표대회 및 국제심포지엄'에 기조 강연자로 참석한 우베 보른쇼이어 독일 그라이프스발트대 교수는 효소(Enzyme)로 녹조현상을 해결하고 플라스틱 쓰레기를 처리할 방법을 찾고 있다. 효소는 생체 내의 화학반응을 촉진하는 단백질이다. 자기 자신은 변하지 않지만, 몸 안에서 일어나는 여러 화학 반응에 참여해 물질들의 반응 속도를 높이는 유용한 촉매다. 최근엔 유용한 효소만 선별해 신약을 개발하는 연구가 점점 증가하는 추세다. 효소의 가능성이 제대로 주목받기 시작한 건 프랜시스 아널드 캘리포니아공과대(CalTech·칼텍) 화학공학부 교수가 효소를 인공적으로 개량해 산업에 활
창원(경남)=박건희기자 2024.04.21 11:41:58AI(인공지능)로 미생물의 핵심 대사반응을 규명했다. 수 천 개의 복잡한 대사물질과 단백질이 얽혀있는 미생물 시스템을 빠르고 정확하게 분석했다. 향후 맞춤형 미생물 제작에 활용할 수 있을 것으로 보인다. 한국연구재단은 윤성호 건국대 시스템생명공학과 교수 연구팀이 AI와 가상세포 기술을 활용해 다양한 영양 조건에서 미생물 성장을 촉진하거나 저해하는 대사 반응을 규명했다고 14일 밝혔다. 연구 결과는 국제 학술지 '몰레큘러 시스템즈 바이올로지'에 지난달 30일 온라인 게재됐다. 미생물은 주어진 영양분을 효율적으로 이용하기 위해 세포 내 대사과정을 정밀하게 조정한다. 이를 통해 최적의 세포 성장을 유지한다. 세포의 대사과정을 이해하려면 성장을 촉진하거나 저해하는 대사 유전자와 경로를 식별해야하지만 유전자 수 천 개, 메신저리보핵산(mRNA), 대사물질이 서로 복잡하게 얽힌 미생물 시스템 특성상 실험적인 규명에 긴 시간이 소요된다. 연구팀은 가상세포를 적용해 대사반응을 예측한 데이터와 다
박건희기자 2024.02.14 14:56:44